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Chapter 1

Introduction

The main task of WP5 is to increase the usability of the HABIT resources through semantic
search options, and doing this by investigating word-level semantic matching and disambigua-
tion. Semantic search has an important part in improving search accuracy by understanding
the intention of the search user. The contextual information carries effective meaning where
the search term appears in the text. There are several aspects of this that could and should
be investigated, in particular when in the web page and social media text tyoe setting that the
HABIT system is facing.

First, it is necessary to indentify what actually constitutes different domains in these types
of texts. That two texts come from social media does not in itself imply that they belong
to one, delimited textual domain. Rather, there is a wide spectrum of different types of
texts that are transmitted through social media, and the level of formality of the language in
addition depends more on the style of the writer than on the actual media (Eisenstein, 2013,;
Androutsopoulos, 2011). They both argue that the common denominator of social media text
is not that it is ‘noisy’ and informal per se, but that it describes language in (rapid) change.
Furthermore, although social media often convey more ungrammatical text than more formal
writings, Baldwin et al. (2013) have shown that the relative occurrence of non-standard syntax
is fairly constant among many types of media, such as mails, tweets, forums, comments, and
blogs. Hence Chapter 2 starts out with a discussion of domains and domain adaptation.

Second, it is not altogether straight-forward to establish what language different texts are
written in. If it is possible to identify the terms that belong to a particular language, it will
be more easy to carry out semantic search in the context of a particular text. In particular,
texts on the web and social media tend to exhibit a higher level of code-switching and code-
mixing than more formal text, so correct language identification in code-switched text aids
the semantic search. When two individuals who are bi- or multi-lingual in an overlapping
set of languages communicate, they tend to switch seemlessly and effortlessly between the
languages (codes) they share. When this code alternation occurs at or above the utterance
level, the phenomenon is referred to as code-switching; when the alternation is utterance-
internal, the term ‘code-mixing’ is common, even though ‘code-switching’ is frequently used
in those cases as well. Code-mixing in itself is often an effect of what recently (particularly
within language teaching) has started to be called ‘translanguaging’, that is, when truly bi-
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lingual individuals are creating new meanings based on their full and double language repertoire
(Lewis et al., 2012). Code-switching is most prominent in spoken language conversations and
has thus traditionally mainly been studied by psycho- and sociolinguists (Auer, 1999; Muysken,
2000; Gafaranga and Torras, 2002; Bullock et al., 2014) and by speech researchers (Lyu et al.,
2015), while the lack of large-scale textual corpora has made code-switching less attractive as
a subject of study in computational or corpora linguistics. However, this started changing in
2003 with the advent of social media, where large amounts of texts are written that are more
informal and more conversational in nature, and hence when produced by bilinguals tend to
contain more code-switching Paolillo (1996). Language identification in code-switched text is
thus the topic for Chapter 3.

Third, it is thus a major issue to decide on what texts and texts types to concentrate on. Due
to the ease of availability of Twitter, most research on social media text has so far focused on
tweets (Twitter messages). Lui and Baldwin (2014) note that users that mix languages in their
writing still tend to avoid code-switching inside a specific tweet, a fact that has been utilized
to investigate which language is dominant in a tweet (Carter, 2012; Lignos and Marcus, 2013;
Voss et al., 2014). However, tweets still tend to be somewhat formal by more often following
grammatical norms and using standard lexical items (Hu et al., 2013), while chats are more
conversational (Paolillo, 1999), and hence less formal, which has several side-effects, such as
increasing the level of code-switching (Cardenas-Claros and Isharyanti, 2009; Paolillo, 2011;
Nguyen and Dogruéz, 2013; Das and Gambéck, 2014).

Fourth, word-level semantic matching and disambiguation in itself entails a wide range of
possible tasks. The original HABIT project proposal suggested the possibility to experiment
with word sense disambiguation, and in patricular stated (p.13) that we would aim to use Multi-
Sense Random Indexing (Moen et al., 2013), a technique based on Random Indexing (Kanerva
et al., 2000). However, the availability of test and training data made it more relevant to look
at a related word-level disambiguating task, namely named entity recognition. Named entity
recognition would play an important role to help the semantic search in a more efficient way.
For example, if the search term is ‘apple’, it may refer to a common noun or proper noun (the
company). If the user intention of the search term is only the proper noun reading, named
entity information helps by guiding the search for the term as a proper noun.

The named entity recognition was applied both on English social media texts (tweets) and on
an annotated Amharic named entity corpus. Rather than restricting to word space models, we
used both a supervised method, namely Conditional Random Fields (CRFs), an evolutionary
feature optimization approach (Differential Evolution), and a deep learning approach in the
form of a recurrent neural network (bi-directional long short term memory). A large set of
different features was developed for identifying and classifying the names and the classifiers
were trained using these. The modules and set-ups for Twitter Named Entity Recognition in
English tweets are discussed in Chapter 4, while the application for deep learning to Amharic
Named Entity Recognition is the topic of Chapter 5.

HABIT — Deliverable 1.1.4 & 5.2 — NTNU — Version 1.0 — January 17, 2017



Chapter 2

Domain Adaptation

Domain Adaptation is a common term for applications that are adapted to a particular text
domain, e.g., Machine Translation, Named Entity Recognition, Spell Checking or Dialogue Sys-
tems. This is a relevant aspect for many of the NLP applications facilitated by the availability
of digitized corpora in emerging economies such as Ethiopia.

In the following, some background and definitions of this process will be given. Finally, some
experiments will be presented. Common to many of the approaches, domains may arise from a
body of text, that is somehow segmented into smaller portions. This entails that experiments
extracting semantic relations from general corpora can also be done on domain specific corpora
that have been segmented beforehand.

Text corpora, such as the crawled corpora of Amharic, Oromo, Somali and Tigrinya can form
the basis of these processes. Using algorithms like Latent Semantic Indexing, Random Index-
ing, Word2Vec or Self-Organizing Maps, allows for the application to interface with the text
resources in order to leverage knowledge therein to achieve Domain Adaptation. Often, the
semantic processing can be done off-line prior to running, while it is leveraged in this on-line
phase. Thus, different applications can interface with the same resources, e.g., to find related
expressions or documents.

2.1 Linguistic Background of Domains

In Linguistics, the understanding of domains is tied to Lexical Semantics, i.e., the study of the
word meaning as opposed to a grammatical function. Braune et al. (2012) argued that errors
due to unseen words and word senses account for most errors when moving into a new domain
in Machine Translation. Thus, word meaning is an important aspect of Domain Adaptation
also in Machine Translation.

The history of Lexical Semantics since 1830 can be divided into three phases, viz. (i) Historical-
Philological (ii) Structuralist and (iii) Post-Structuralist Semantics (Geeraerts, 2010). In the
second of these phases, Lexical Field Theory (also known as Semantic Fields) (Trier, 1973)
emerged as a way of explaining the structure of language and the relations between words.
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Medicine Computer Science

HIV 1 0
AIDS 1 0
virus 0.5 0.5
laptop 0 1

Table 2.1: Example of a Domain Model.

Trier (1973) characterized such lexical (semantic) fields as mosaics of sets of related lexical
items with interdependent meanings. These delineated lexical fields consist of sense-related
words. The theory was not uncontroversial, e.g., since the mosaic metaphor is suggesting hard
borders between fields exist. Moreover, a relationship can be inferred between this theory and
modern ideas like semantic nets.

2.1.1 A Theory of Semantic Domains

Gliozzo and Strapparava (2009) developed a theory of Semantic Domains based on Lexical
Field Theory. The hypothesis of lexical coherence conjectures that a large part of the lexical
concepts in a specific text belongs to the same domain, and constitutes the founding idea behind
the theory. In addition, Wittgensteinian Language Games were used as the theoretical basis
for delineating these Semantic Domains by inspecting real data in such a way that Semantic
Domains arise from words as they are used (i.e., meaning-is-use). Each of the texts from which
Semantic Domains are induced comprise Language Games of their own. While the “theoretical
void” of delineation in Lexical Field Theory is filled by positing that Semantic Domains are
defined by the properties of domain specific corpora, the delineation of these texts is not
theoretically addressed.

Nonetheless, the theory established a computational model for Semantic Domains and a way of
characterizing them. This is done using Domain Models — a tabular expression of the relative
importance of terms and domains. Gliozzo and Strapparava (2009, p.20) defined Semantic
Domains as:

“Semantics Domains are common areas of human discourse, such as Economics,
Politics, Law, Science, etc, which demonstrate lexical coherence.”

An example of a Domain Model is found in Table 2.1. The numbers indicate the Domain
Relevance, for which a function R(D,, O) is defined to indicate the relevance of a domain D, to
a linguistic object, O. Domain Relevance could be established either from hand-made sources
such as WordNet Domains (Magnini and Cavaglia, 2000) or via unsupervised algorithms such
as Latent Semantic Indexing.

Gliozzo and Strapparava (2009) applied Domain Models to several NLP tasks, such as Word
Sense Disambiguation and (Cross-lingual) Text Categorization, reporting consistent perfor-
mance improvements. By building Multilingual Domain Models from parallel corpora, com-
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limited subject matter,

lexical, syntactic and semantic restrictions,

deviant rules of grammar,

high frequency of certain constructions,

text structure, and

use of special symbols.

Figure 2.1: Properties of sublanguages (Lehrberger, 1982).

parable corpora, and dictionaries, such models could be used to ascribe similarity between
documents in different languages.

2.1.2 Domains vs. Sub-languages

Domains and Domain Adaptation (primarily in the context of Machine Translation systems)
were discussed also before the emergence of the data-driven translation era, then usually as
sublanguages (Lehrberger, 1982; Luckhardt, 1991). Kittredge (1983) observed:

“Sublanguages have been characterized in various ways, but there is no widely
accepted definition of them.”

Sublanguages were regarded it as restrictions of natural language such that semantic processing
was feasible. Moreover, it was stated that these sublanguages are potentially infinite. Kittredge
considered the following factors necessary restrictions for efficient semantic processing: (i)
restricted domain of reference (ii) restricted purpose and orientation (ii) restricted mode of
communication and (iv) community of participants sharing specialized knowledge. Evidently,
this usage of the term domain was in reference to something more specific than the sublanguage
itself; rather what the sublanguage refers to.

In studies of translation Lehrberger (1982) presented a descriptive study of a text corpus
comprised by instructions for aircraft maintenance of about 70,000 words, regarding — and
analyzing — it as a sublanguage. As a result, the properties of sublanguages were summarized,
presented in Figure 2.1.

The following property of sublanguages was also observed:

“It should be clear /.../ that a sublanguage is not simply an arbitrary subset of the
set of sentences of a language.“

HABIT — Deliverable 1.1.4 & 5.2 — NTNU — Version 1.0 — January 17, 2017
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However, the term sublanguage has not been uncontroversial, as the connotations to set theory
presupposes that there exists a superlanguage from which sublanguages can be separably cut
out (Karlgren, 1993). Karlgren argues that this could make the concept seem unrealistically
simple (and prefers the term register). However, the disagreement appears largely about the
semantics of the term itself, as Lehrberger (1982) states clearly that

Furthermore, sublanguages overlap and their interrelations form a part of the de-
scription of the language as a whole. A language is not simply a union of sublan-
guages ...

Melby (1997) defined a sublanguage as the following:

“A sublanguage could be considered to be a case of domain-specific language that
is naturally rather than artificially controlled”

thereby distinguishing between the terms.

2.2 Domains and Domain Adaptation

In Mathematics, a domain of a function is the set of arguments over which the function is de-
fined. Unfortunately, there is no such commonly agreed on definition of the domain concept in
dialogue analysis and linguistics, nor in many other fields. In Psychology, for example, a domain
is understood to pertain to the way knowledge is stored in the human mind; however, there is no
clear sense of what such domains actually are, but rather that they represent common knowl-
edge, also known under names such as domain-specific knowledge, subject-matter-knowledge,
and content-specific knowledge (Alexander, 1992). Carpuat (2014) noted the lack of a defini-
tion of what a domain is in the context of machine translation, but related it to topics, genres
and registers (sub-languages), while Plank (2011) defined a textual domain as a hypernym over
any kind of text variability, such as topic, genre, style medium and vocabulary, and presented
empirical evidence on the variability of sentence length across domains as another dimension.
In a similar, but more concrete fashion, we define the concept of a dialogue domain as follows:

Definition 1. (Linguistic) Dialogue Domain

A dialogue domain incorporates the (linguistic) entities referred to in a dialogue, as
well as the ways the entities are referred to, including both the distinct and general
vocabulary utilized, and the distinct and general grammatical structures, dialogue
acts and strategies used.

Note that this definition deviates from, e.g., the definition of a domain in the model-theoretic
tradition following Montague (Partee, 1976), in that it not only includes the discourse entities,
but also the interpretation function and the vocabulary (hence rather the entire model, in the
Montagovian sense), and in addition the particular language structures, as well as the dialogue
acts and dialogue strategies.

HaBIT — Deliverable 1.1.4 & 5.2 — NTNU — Version 1.0 — January 17, 2017



Domain Adaptation 7

Definition 1 also deviates from the theory of Semantic Domains developed by Gliozzo and
Strapparava (2009) on the basis of Lexical Field Theory (Trier, 1973), and built on the hy-
pothesis of lexical coherence, which conjectures that the majority of the lexical concepts in
a text belong to the same domain. These Semantic Domains are centered around a Domain
Model, which is a tabular expression of the relative importance of terms in domains. Then
domain relevance can be established either from hand-made sources such as WordNet domains
(Magnini and Cavaglia, 2000) or via unsupervised algorithms such as Latent Semantic Index-
ing (Deerwester et al., 1990), but the approach entails that domains arise from a given unit of
text. In contrast, Definition 1 allows for domains to be induced from, e.g., unstructured text
corpora, without predefined knowledge of how many domains the texts should be assigned to.

Furthermore, Definition 1 crucially differs from how document specific properties are inter-
preted in Information Retrieval (IR), in that it includes both the distinct terms used in a
domain and the general vocabulary. In an IR setting, the general vocabulary terms would be
considered to be ‘stop words’ conveying no distinguishing properties, and commonly removed,
while the domain concept here would include these terms in order to establish any domain
specific relationships between themselves or between them and the domain specific vocabulary.

Overall, we will here take the machine learning oriented perspective of Jiang (2008) that Do-
main Adaptation can be seen as a classification task where the distribution of the instances
in the training and target domains differ, but where the aim is to use labeled data from one
domain to train classifiers for the other domain. The process of adaptation is thus to pick up
novel characteristics in the target domain, so that the resulting, adapted model can correctly
classify instances belonging to it. Hence, Domain Adaptation presents a fundamental obsta-
cle for statistically learned models, which assume that the data they are to be tested on is
distributed identically to the data on which they were trained.

HABIT — Deliverable 1.1.4 & 5.2 — NTNU — Version 1.0 — January 17, 2017
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Chapter 3

Language Identification in
Code-Switched Text

Social media texts are often fairly informal and conversational, and when produced by bilin-
guals tend to be written in several different languages simultaneously, in the same way as
conversational speech. Often the messages contain text snippets from several languages, that
is, showing code-switching. Sometimes the messages even contain code-mixing, where there is
a mix of the languages inside a single utterance or even inside a token itself, and it is a challeng-
ing task to identify which languages the different words are written in. The recent availability
of large social media corpora has thus also made large-scale code-switched resources available
for research.

Das and Gambéack (2013) give a comprehensive overview of the work on code-switching until
2015. Notably, Solorio and Liu (2008) trained classifiers to predict code-switching points in
Spanish and English, using different learning algorithms and transcriptions of code-switched
discourse, while Nguyen and Dogruéz (2013) focused on word-level language identification (in
Dutch-Turkish news commentary). Nguyen and Cornips (2016) describe work on analyzing
and detecting intra-word code-mixing by first segmenting words into smaller units and later
identifying words composed of sequences of subunits associated with different languages in
tweets (posts on the Twitter social-media site).

In order to address the issues of evaluation and comparison these new corpora entail, we have
defined an objective measure of corpus level complexity of code-switched texts (Gambéck and
Das, 2014), which will be discussed briefly below (Section 3.1). The code-mixing measure has
been developed and tested as described in a series of papers (Das and Gambiéck, 2014; Jamatia
et al., 2015, 2016), but in particular a paper published at the 10th International Conference on
Language Resources and Evaluation (LREC’16) finalizes the measurement and also shows how
this formal measure can be used in practice, by applying it to several code-switched corpora
(Gambaéck and Das, 2016).

A data challenge / shared task on language identification in code-switched text was organized
at EMNLP 2014 (Solorio et al., 2014) and repeated in 2016 (Molina et al., 2016), with new
datasets. We participated in the shared task and proposed a supervised approach to language
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identification in code-switched data, framing this as a sequence labeling task where the label of
each token is identified using a classifier based on Conditional Random Fields and trained on a
range of different features, extracted both from the training data and by using information from
Babelnet and Babelfy. The language identification system was published in Proceedings of the
Second Workshop on Computational Approaches to Code Switching, EMNLP-2017 (Sikdar
and Gambaéck, 2016b), with the key parts described here (Section 3.2).

3.1 Measuring Code-Switching in Corpora

When comparing different code-switched corpora to each other, it is desirable to have a mea-
surement of the level of mixing between languages, in particular since error rates for various
language processing application would be expected to increase as the level of code-switching
increases. Both Kilgarriff (2001) and Pinto et al. (2011) discussed several statistical measures
that can be used to compare corpora more objectively, but those measures presume that the
corpora are essentially monolingual.

Debole and Sebastiani (2005) analysed the complexity of the different subsets of the Reuters-
21578 corpus in terms of the relative hardness of learning classifiers on the subcorpora, a
strategy which does not assume monolinguality in the corpora. However, they were only
interested in the relative difficulty and give no measure of the complexity as such. In Gambéck
and Das (2014) we instead suggested an initial Code-Mixing Index to assess the level of code-
switching in an utterance. This measure will be taken as the starting point, and elaborated on
here.

3.1.1 Utterance Level Switching

If an utterance x only contains language independent tokens, its code-mixing is zero; for other
utterances, the level of mixing depends on the fraction of language dependent tokens that
belong to the matriz language (the most frequent language in the utterance) and on N, the
number of tokens in z except the language independent ones (i.e., all tokens that belong to
any language L;):!

N () max{iz )
(3.1) Cy(z)= ;V(ZC) :N(z)>0

(L;€L, the set of all languages in the corpus; 1 < max{tz.} < N). Notably, for mono-lingual
utterances C,, = 0 (since then max{t;} = N).2

!Note that the formula in Equation 3.1 differs from, but is equivalent to, the one given in Gambéck and Das
(2014).

2Consider, e.g., an utterance U; with 10 words. If 5 of the words come from language L1 and the other from
language Lo, its C, will be (10 — 5)/10 = 0.50. However, another 10-word utterance Uz with all words coming
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Language Identification in Code-Switched Text 11

This initial measure has several short-comings. In particular, it does not reflect what fraction
of a corpus’ utterances contain code-switching, nor take into account the number of code
alternation points: arguably, a higher number of language switches in an utterance increases
its complexity, while a corpus with a larger fraction of mixed utterances is (on average) more
complex.?

Two main sources of information will be utilized to fully account for the code alternation at
utterance level: the ratio of tokens belonging to the matrix language (fy, = [N —max{tr,}|/N
as in Equation 3.1) and the number of code alternation points per token (f, = P/N, where P
is the number of code alternation points; 0 < P < N).

There are many ways to combine two (or several) information sources, in particular if they are
independent; see, e.g., Genest and McConway (1990) for an overview. However, P partially
depends on max{ty },* which, for example, rules out the common logarithmic opinion poll:

(32) ple) = T pee)™ S we=1
k=1

k

Instead we will use the linear opinion poll:
(3.3) p(w) = wy, x p(x) DY wp=1
k=1 k

Combining fy,(z) and f,(x) gives a revised utterance level measure for N(x) > 0:

(3.4) Cu(z) = wp frn () + wp fp(z)

N(x) —g}gﬁ{tm}(w)

N(z)

P(x)
N(z)

= Wy, 100w, 1100

Win (N(af) —Lig]])i{tLi}(xD + w,P(x)

=100 - N)

where wy, and w, are weights (w,, + w, = 1). Again, C,, = 0 for mono-lingual utterances
(since then max{tr,} = N and P = 0).

from different languages gets C,,(Uz) = (10 — 1)/10 = 0.90, correctly reflecting the intuition that Uz presents a
more complex mix.

3Compare two 4-word utterances Us and Uy with 2 words each from the languages L; and L2. Thus
Cu(Us) = Cy(Us) = (4 —2)/4 = 0.50. But if Us only contains 1 code alternation point (e.g., if the words are
WL, WL, WL, WL, ), while Uy contains 3 switches (e.g., wr, wr,wr, wr,), then Uy will most likely be more difficult
to analyse.

“In utterance Us with 10 words, all from different languages (max{tr} = 1), there must be a code alternation
between each word, so P = 9. If instead max{tz,} = 2, then 4 < P < 9, since the utterance, e.g., can contain
2-token sequences from five languages (P = 4) or ten 1-token sequences from up to eight different languages.

HABIT — Deliverable 1.1.4 & 5.2 — NTNU — Version 1.0 — January 17, 2017
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3.1.2 Corpus Level Switching

Moving to corpus level, the measure could be defined simply as average utterance level switch-
ing, as in Equation 3.5

1 U
(35) Cavg = E ;Cu(x)

where U is the number of utterances in the corpus.

However, that would ignore two important points: that C, does not account for code-
alternation between two utterances, and that the frequency of code-switched utterances in
a corpus increases its complexity.

Hence, when combining several utterances, an utterance’s matrix language and the matrix
language of the previous utterance need to be represented (if they differ, that implies adding
a code-alternation point between the two utterances).® For each pair of utterances, a factor
must be included to account for this, as shown in Equation 3.6:

(3.6) Cy(z—1,2) = Cy(z—1) + Cy(z) + wpo(z) :

Ly = max{tr(z—1)}
LiG]L
L, = max{t;(x)}
Lie]L
0:2=1V Ly =1L,
S) =, 1
. 1:ax#£1ANLyy # Ly

For combining a corpus’ all utterances, we take inspiration from readability indices that are
purely word frequency-based and (as Cy), e.g., make no distinction between different word
classes. Those are calculated using the average sentence length and another factor, e.g., the
average number of syllables per word as in the ‘Reading Ease’ score (Flesch, 1948), the frequency
of multi-syllabic words in ‘Fog’ (Gunning, 1952), or the frequency of long words in ‘LIX’
(Bjornsson, 1968).

Flesch’ Reading Ease score is based on the average number of words per sentence and average
number of syllables per word:

(3.7) RE = 206.835 — [1.015 - (g) +84.6- (%)]

where W is the number of words in the text, S the total number of sentences, and L the total
number of syllables (hence words/sentence are weighted as 1.2 - syllables/word).

5This is different from, and more important than, checking whether the language of an utterance’s first token
differs from that of the previous utterance’s last token.
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Language Identification in Code-Switched Text 13

The Fog Index is the number of words per sentence plus the percentage of multi-syllabic words:

W F
3.8 Fog=0.4-[= +100- (==
(38) o5 = 04[5 +100- (i)
where W is the number of words in the text, S the number of sentences, and F' the number of
“foggy” words, that is, mainly words with more than three syllables.

The LIX measurement is the number of words per sentence plus the percentage of long words:

W L
3.9 LIX = — +100 - (=
(39) S 100+ ()
where W is the number of words in the text, S the number of sentences, and L the number of
long words (defined as words with more than five characters).

In the case of code-switching, the first factor is the average switching level per utterance, as
calculated by inserting the C,, given by Equation 3.6 into the average of Equation 3.5, while the
second factor is the frequency of utterances that contain any code-switching (i.e., utterances
with C,, > 0). Thus arriving at Equation 3.10:

U
- Culz) + wpd(x)

(3.10) C, == Fuws 100

U U
U
O S e 0 ]

=1

where S is the number of utterances that contain code-switching (0 < S < U), and w; the
relative weight attached to the switching frequency.

3.1.3 Comparing Corpora Level Switching

The main issue when applying an information source combination method (e.g., Equation
3.2 or 3.3) is how to choose the weights, and several strategies have been proposed. We tried
a number of them experimentally at the utterance level, but the only combination giving
reliable and intuitive values was the average (equal weights: wy, = %) reflecting an observation
also made by Clemen (2008): “Having spent much of my career studying various combination
methods, it has been somewhat frustrating to consistently find that the simple average performs

so well empirically.” (p.765)

With two information sources, the weights are w,,, =w, = % and Equation 3.4 (for N >0) reads:

N (@)~ max{t,,}(x) + P(x)

(3.11) Cu(z) = 100 - B
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Similarly, for determing the relative weight attached to the switching frequency at the corpus
level (wy in Equation 3.10), we again compare to readability indices. Fog and LIX combine
two information sources without weighting (i.e., indirectly use the average); however, Reading
Ease applies a weighting which treats the {words/sentence} factor as 1.2 x {syllables/word}.
Flesch (1948) derived this through regression based on correlations between the average grade
of children and those who could answer 50% and 75% of some test questions.

Using these weights, Equation 3.10 becomes

(3.12) C.= 13,0[ Z( @)+ fp(x)—i-é(x))—i-gS}
max{tL}( )—P(x)

U[ézUX Liel . —l—5(9:))+25’]

r=1

This objective measure of the complexity of code-switched texts has been tested on a range of
social media corpora written in a variety of combinations of languages. Certainly, though, no
such measure will ever be able to capture all types of differences between corpora. In particular,
the ways corpora were collected and their intended usage also need to be taken into account.
However, levelling out such differences should arguably not be the aim of the code-switching
measure itself, but rather be left to the users: when comparing corpora with widely different
scopes, the users themselves need to be aware of the potential variation and consider this when
deciding on whether a straight-forward comparison really makes sense.

The next section will go into one of the key problem areas related to code-switching, namely
the identification of which languages a particular text is a mix of, and most vitaly, which
language every word in those texts belong to, that is, the word-level language identification
and disambiguation task for code-switched texts.

3.2 Language Identification

A first code-switching data challenge was organized at EMNLP 2014 (Solorio et al., 2014).
The task was to identify the language for each word in a text, classifying the words according
to six labels: ‘Langl’, ‘Lang2’, ‘Mixed’, ‘NE’, ‘Other’, and ‘Ambiguous’. The first two labels
identify tokens from the main languages that are mixed in the text, while the third is for
tokens with word-internal mixing between these languages; ‘NE’ for named entities; ‘Other’ for
language independent tokens (punctuation, numbers, etc.) and tokens from other languages,
and ‘Ambiguous’ denotes tokens that cannot safely be assigned any (or only one) of the other
labels. This shared task was organized again in 2016 (Molina et al., 2016), with new datasets
and slightly different labels, adding ‘Unk’ for unknown tokens.%

We participated in the shared task and proposed a supervised approach to language identifi-
cation in code-switched data, framing this as a sequence labeling task where the label of each
token is identified using a classifier based on Conditional Random Fields (CRF) and trained on

6An eighth label ‘FW’ was included for foreign words, but no words in the English-Spanish corpora were
tagged with it.
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a range of different features, extracted both from the training data and by using information
from Babelnet and Babelfy. We used the C*t*-based CRF™* package (Kudo, 2013), a simple,
customizable, and open source implementation of Conditional Random Fields for segmenting
or labelling sequential data. Conditional Random Fields (Lafferty et al., 2001a) are condi-
tional, undirected graphical models that can easily incorporate a large number of arbitrary,
non-independent features while still having efficient procedures for non-greedy finite-state in-
ference and training.

The CRF classifier was trained and tested on the datasets annotated by the shared task orga-
nizers (Molina et al., 2016).” Three types of data were provided: training, development and
test, all containing tweets written in either English, Spanish or a mix of the two languages.
In the training and development datasets, the total number of tweets are 11,400 and 3,014,
respectively, with language identification offsets given for each category. In the test data, the
total number of tweets is 17,723 without annotations. 7,724 of the tweets in the test data
actually contain some code-switching, while the remaining 9,999 are monolingual. If tweets
that contain URLs are disregarded, there are 10,716 tweets in the test data, of which 4,626
contain code-switching (and hence 6,090 that do not contain any language mixing).

3.2.1 Features based on training data

Two sets of features were developed to train the CRF-based language identification model: one
extracted from the training data and the other based on information from Babelnet (Navigli
and Ponzetto, 2012) and Babelfy (Moro et al., 2014), with most of the features and their
settings being based on the training data. The complete set of features induced from training
data was as follows:

Local context. Local contexts play an important role for identifying the languages. Here the
two preceding and two succeeding words were used as local context.

Word suffix and prefix. Fixed length characters stripped from the beginning and ending of
the current word. Up to 4 characters were removed.

Word length. Analysis of the training data showed that the Spanish words on average were
shorter than the English words. Words with 1-4 characters were flagged with a binary
feature.

Word previously occurred. A binary feature which checks if a word already occurred in
the training data or not (i.e., if the word presents in the training data, the feature is set
to 1 otherwise 0).

Initial capital. In general, proper nouns tend to start with capital letters, so this feature
checks whether the current word has an initial capital.

All capitals. A binary feature which is set if the current word contains only capital letters.
The feature is very helpful for identifying named entities (since, e.g., abbreviations often
refer to named entities).

"care4langl.seas.gwu.edu/cs2/call.html
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Single capital letter: checks if the word contains a single capital letter or not.

All digits: set to 1 if the word contains only numerical characters. This is helpful for identi-
fying tokens belonging to the ‘Other’ category.

Alphanumeric: a binary feature which flags if the word contains only digits and alphabetical
characters together.

All English alphabet: checks if all a word’s characters belong to the English alphabet.

Special Spanish character: a flag which is set if the current word contains any Spanish-
specific letters (4, é, etc.).

Hash symbol: set to 1 if a word contains the symbol ‘#’, otherwise 0.
Rate symbol: set to 1 if the current word contains the symbol ‘@’.

Word with single letter. Many single letter words were observed to belong to Spanish, so
this flag is set if the word length is exactly 1.

Two consecutive letters. Some words repeat two character sequences several times (e.g.,
hahaha, jaja). Each token is split into two character sequences and this binary feature is
set if each two letter character sequences matches.

Same letter occurred multiple times. Many words in tweets contain sequences of the
same character repeated many times (e.g., ewww, yaaaas). The feature is set if a letter
occurred in a word more than two times consecutively.

Gazetteer NE list. A list of named entities (NE) was collected from the training data. This
flag is set if a token matches an item on the NE list.

Special character list. A list of special characters (e.g., emojis) was collected from the train-
ing data. If a tokens contains any character which is on the list, the binary feature is
set.

3.2.2 Babelnet and Babelfy features

Three further features were developed from external resource, Babelnet (Navigli and Ponzetto,
2012) and Babelfy (Moro et al., 2014):

WordNet feature: Every token is passed to the Babelnet database for checking whether the
token exists in the English WordNet or not. If the token appears in the database, the
feature is set to 1, otherwise to 0.

Multilingual WordNet: The Babelnet Multilingual WordNet is checked for Spanish, by
passing each token to the Babelnet database and checking whether the token is present
in the database or not.

Babelfy Named Entity: Named entities are extracted from Babelfy and used as a feature,
which is utilized for identification of the ‘NE’ category tokens.
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Mono-lingual = Code-switched Weighted Token-level
System setup

P R Fq P R Fq Fq Accuracy
Without external resources | 0.94 0.92 0.93 0.82 0.85 0.83 0.904 0.943
With external resources 0.95 093 094 0.82 0.87 0.85 0.911 0.952

Table 3.1: System performance on the development data, with and without the external re-
sources (Babelnet and Babelfy)

3.2.3 Results

There were two types of evaluation, at tweet level and at token level. On the test data,
performance was checked on tweets with and without URLs. The tweet level precision (P),
recall (R) and Fy-scores obtained on the monolingual part of the development data were 95%,
93% and 94%, respectively. On the code-switched part, the precision, recall and F;-scores were
82%, 87% and 85%, giving a weighted, total Fi-score of 91.1%. At token level, the development
data accuracy was 95.2%, as shown in Table 3.1.

Table 3.1 also gives the development data scores for a system trained without the second
feature set, i.e., without the Babelnet and Babelfy features. As can be seen in the table, the
contribution from those features is small but useful, adding 0.9% to the token-level accuracy
and 0.7% to the tweet-level weighted F; score, with the main contribution (2%) being on recall
for the tweets containing code-switching.

Applying our system to the test data excluding tweets with URLs, the tweet level monolingual,
code-switched and weighted Fi-scores were 91%, 87% and 89%, with a token level accuracy
performance of 96.5%. When including all tweets, the same tweet level Fi-scores were 90%,
85% and 87.4%, and the token level accuracy 95.7%.

Overall nine teams participated in the shared task, with the top-6 teams obtaining fairly sim-
ilar performance on all measures, and both at token and tweet level, although some systems
performed clearly better when the tweets containing URLs were excluded. For both evaluation
levels, our system achieved fifth place in the shared task when excluding tweets with URLs,
and third (token) and fourth (tweet) place when including all tweets, with a token level accu-
racy difference between our system and the best performing systems of only 0.8% and 0.4%,
respectively. At the tweet level, the system performed relatively better on monolingual tweets
than on tweets that contained some code-switching, when compared to the other top systems.
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Chapter 4

Twitter Named Entity Recognition

Named entity recognition is the process of identifying proper names and classifying them into
some predefined labels/categories. Named Enties play an important role to help the semantic
search in a more efficient way, for example, by identifying whether the search term ‘apple’ refers
to an edible object or a company. The named entity recognition was applied on social media
texts (tweets). Systems that simultaneously identify and classify named entities in Twitter
typically show poor recall. To remedy this, the task is here divided into two parts: i) Named
entity extraction from tweets and ii) Twitter name classification into ten different types.

The noisiness of the texts makes Twitter named entity (NE) extraction a challenging task,
but several approaches have been tried: Li et al. (2012) introduced an unsupervised strategy
based on dynamic programming; Liu et al. (2011) proposed a semi-supervised framework using
a k-Nearest Neighbors (kNN) approach to label the Twitter names and gave these labels as an
input feature to a Conditional Random Fields, CRF (Lafferty et al., 2001a) classifier, achieving
almost 80% accuracy on their own annotated data. Supervised models have been applied by
several authors, e.g., Ritter et al. (2011) who applied Labeled LDA (Ramage et al., 2009) to
recognise possible types of the Twitter names, and also showed that part-of-speech and chunk
information are important components in Twitter NE identification.

First, we used a supervised method, namely Conditional Random Fields (CRFs) to identify
and classify Twitter names. A large set of different features was developed for identifying
and classifying the named entities, and the CRF-based classifier was trained using these. The
features can be divided into three sets: i) Lexicon-based features, ii) Character-based features
and iii) Context-based features. The feature-rich Twitter Named Entity Recognition and Clas-
sification system was published in the Noisy User-generated Text (W-NUT) shared task at
COLING-2017 (Sikdar and Gambéck, 2016a). For Twitter named entity recognition on unseen
test data, our system obtained the second highest F; score in the shared task: 63.22%. The
system performance on the classification task was worse, with an F; measure of 40.06% on
unseen test data, which was the fourth best of the ten systems participating in the shared task.

As an alternative and in order to improve the Twitter named identification accuracy, another
Twitter named entity identifier was developed using a CRF-based model together with an unsu-
pervised method, multi-objective framework built on Differential Evolution (DE). Differential
Evolution is an evolutionary algorithm, which not only optimises the feature set by selecting
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the most relevant features, but also identifies the proper context window for each selected fea-
ture. The named entity classification was done using Vector Space Modeling and edit distance
techniques. Several different Twitter named entity models were generated and later the out-
puts of the different models were combined to enhance the system accuracy. The approach
obtains F-scores of 70.7% for Twitter named entity extraction and 66.0% when subsequentially
aiming to link the extracted entities to the DBpedia database. This work was published in
ICON 2016: the 13th International Conference on Natural Language Processing (Sikdar and
Gambick, 2016c¢).

4.1 Features for Twitter Named Entity Recognition

A range of different features were developed for identifying the Twitter names. These features
are described below. Note that some of the feature types are implemented as several different
features and that the first five types mainly are lexicon-based, while the last five types primarily
relate to the context. The eight feature types in the middle of the list are predominantly word
internal and character-based. The contributions of these three different groups of feature types
will be compared to each other in the next section.

Lexicon-based features

Lexical data: This binary feature was extracted from the lexical data supplied by the
W-NUT shared task organisers. The feature is set to 1 if the current word belongs to
the lexical data, otherwise 0. In the DE-based experiments, this feature was based
on a Gazetteer list automatically extracted from the training data.

Babelfy named entities: Each tweet was passed to the Babelfy (Moro et al., 2014)
named entity recognition system for recognizing Twitter names. If the current word
belongs to the Babelfy named entities, this binary feature is set. No Babelfy infor-
mation was used in the DE experiments, but only a flag for if the word had been
seen previously in the data.

Part-of-speech (POS): The TweeboParser! was used for generating part-of-speech
tags for each token in the tweets and the POS tag of the current word was used as
a feature. The POS tags of the previous two tokens and following two tokens were
also used as features, so in total there are five POS tag features for each token.

Stop word match: All tokens are checked against a stop word list collected from the
web.? The binary feature is set if the current token matches one of these stop words.

Word frequency: Less frequent words were found to often belong to named entities. If
the pre-calculated frequency from the training data of the current word is less than
a certain threshold, this binary feature is set.

Character-based features

Numeric: Many Twitter names were found to contain numeric characters, so this binary
feature shows whether the current token contains numeric characters or not. In the

"http://www.cs.cmu.edu/~ark/TweetNLP/
’http://www.ranks.nl/stopwords
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DE-based experiments, this feature was split into two: one for at least one numeric
character and one for tokens with only digits.

Initial capital: Proper nouns in general tend to start with capital letters, so this feature
flags if the current word has an initial capital letter.

Inner capital: This feature is set if the token contains any capital letter in a word-
internal position. In the DE-based experiments, two features were added for tokens
with only one capital and for those with only capitals.

Word normalisation: The word mapped to its equivalent class: each capital letter in
the token is mapped to ‘A’, all lower-case letters to ‘a’, and digits to ‘0’. Other
characters are kept unaltered.

Special character followed by token: Many Twitter names follow certain special
characters (e.g., ‘@ and ‘#’). The feature checks if the token is following any
special character or not.

Word length: If the current word’s length is greater than some threshold (e.g., > 5),
this binary feature is set.

Word suffix and prefix: A fixed maximum number of characters (e.g., 4) are stripped
from the beginning and the end of the current word, with the remainder parts being
used as two features.

Context-based features

Local context: Local contexts play an important role in identifying Twitter names. In
the W-NUT experiments, we used the three previous and the three next words as
local contexts (so there are six context features). In the DE experiments, only the
preceding and suceeding words were used as local context.

Chunk information: Chunk information was collected using annotated chunk data
from the OSU Twitter NLP Tools.?> A CRF-based chunk model was developed
using prefix, suffix and part-of-speech information. Each tweet was passed to the
chunk model and chunk labels generated for that tweet. This information was then
used as a feature for the current token. In addition, the chunk information of the
previous token and the following token were also used as features. (The chunk
information was not utilized in the DE-based experimements.)

First word: This binary feature checks if the current token is at the beginning of a
sentence or not.

Last word: This binary feature is set if the current token is the last word of a sentence,

without considering sentence ending symbols and punctuation marks (i.e., ‘) <7’
‘I ete.).

Previous label: Finally, the previous token’s calculated named entity label was used as
a feature.

For the actual named entity system, some of the limits used for the features were set based on
testing on the training data. Hence, the thresholds for the word frequency and word length
features were empirically set to > 10 and > 5, respectively, while the prefix and suffix strip
lengths were fixed to four characters.

Shttps://github.com/aritter/twitter_nlp/blob/master/data/annotated/chunk.txt
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Features Recall Precision Fy
Lexical 57.19 49.48 53.05
Word internal | 44.18 49.32 46.61
Context 16.79 57.81 26.03

Table 4.1: Feature class contributions to Twitter Named Entity Identification (‘notypes’ devel-
opment data)

4.2 Supervised Named Entity Identification and Classification

The Twitter Named Entity Recognition shared task (Strauss et al., 2016) at W-NUT 2016, the
COLING workshop on noisy user-generated text, was divided into two subtasks: ‘notypes’ and
‘10types’. In the ‘notypes’ subtask, named entities should just be identified in the tweets, while
in the ‘10types’ subtask the aim was to identify and classify Twitter names into ten different
categories: facility, geo-loc, movie, musicartist, person, company, product, sportsteam, tvshow,
and other. We hence first identify the Twitter names from the tweets, and then in a second
step classify the names according to the ten given labels.

The Twitter named entities were first extracted from the tweets using a supervised machine
learning approach, namely Conditional Random Fields, CRFs (Lafferty et al., 2001a). We used
the C** based CRF*T package,* a simple, customizable, and open source implementation
of CRF for segmenting or labelling sequential data. For the ‘notypes’ task, the system was
developed on the training data and evaluated on the development data. The ‘notypes’ model
was initially developed using all the training data provided by the shared task organizers
(Strauss et al., 2016), but that gave low recall in relation to the precision. To increase the
recall performance, the tweets that did not contain any named entities were removed from
the training data, and a new model was built using all the features described in Section 4.1.
This system achieved recall, precision and F-measure values of 68.68%, 65.14% and 66.86%,
respectively. This F-measure value represents an increase by almost 7% compared to the model
which was built using all the training data.

Table 4.1 looks at the feasibility of the different groups of features, that is, how much each
feature group actually contribute in isolation. In the table, the features are sorted into three
different classes: ‘lexical’, ‘word internal’ and ‘context’. Referring to Section 4.1, the ‘lexical’
group consists of the features lexical data, babelfy, POS, stopword and word frequency. The
‘word internal’ (character-based) feature group contains the alphanumeric, initial /inner capital,
normalisation, special character, word length and pre-/suffix features, while the ‘context’ group
is made up of the context window words features, chunk, first/last words, and the previous
token’s label. As can be seen in Table 4.1, the context features do not contribute much at all
to improving the recall, but are the most helpful features for improving the precision. The
lexical and word internal features contribute roughly equally to the precision score, but the
lexical features very clearly are the most useful for achieving good recall.

‘http://crfpp.sourceforge.net
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The full-feature set ‘notypes’ model built only on the tweets with named entities was entered in
the W-NUT shared task and when applied to the unseen test data it achieved state-of-the-art
results by obtaining the second highest score in the task. The system achieved recall, precision
and Fy values of respectively 64.18%, 62.28% and 63.22%, which was 2 points less on F-measure
than the best performing system, but 3 points more than the third ranked system.

For the ‘10types’ subtask, the goal was to identify and classify Twitter names into ten given
categories. Two models were developed for the Twitter name classification, as follows:

Model-1: In Model-1, the tokens are classified into ten categories using CRF. The same
features were utilised as described in the experiments above.

Model-2: This model was based on the lexical data given by the shared task organisers
(Strauss et al., 2016): the Twitter named entity classes are categorized into 10types
based on the supplied file ‘dictionaries.conf’. In addition, Twitter names were ex-
tracted from the training data and merged with the lexical data for each category. All
tokens were passed to the lexical data and classified into the ten categories.

The output of these two models was first merged and the merged output was later checked as
to whether it belonged to ‘notypes’ or not. When merging the output from the models, highest
priority was given to Model-2, if the two models generated different named entity classes for
a particular token. For example, ‘Washington Navy Yard’ is recognized as belonging to the
other category by the Model-1, but Model-2 recognizes it as facility. So the category actually
assigned to this entity by the overall system will be facility, as suggested by Model-2. If an
entity matches more than one class in Model-2, we randomly assign the class of the entity
among the matched classes.

Next, the merged output was compared to the ‘notypes’ entities. If the merged output belongs
to those ‘notypes’ entities (fully matched), the output entity is considered to be a Twitter name,
otherwise it is discarded. For example, the entity ‘Nobu Restaurant’ is classified as other, but
this entity is not identified by ‘notypes’, so it is not considered as a Twitter named entity. When
using all the feature classes (lexical, word internal and context), Model-1 produced the best
recall (28.74%) with an F-measure of 37.40%. Model-2 generated a better precision (85.16%),
but due to bad recall still had a lower Fi: 27.63%. Combining the two models boosted the
results on the development data on all measures, giving a 43.81% F-score.

Table 4.2 indicates the contribution from each of the three types of feature sets to the per-
formance of Model-1. Just as for the identification task, it is also for classification clear that
the context features are most helpful for boosting precision, while the lexical features help the
recall most.

Applying the ‘10types’ model to the previously unseen test data, it achieved recall, precision
and F-measure values of 53.19%, 32.13% and 40.06%, respectively. The system came in fourth
place in this subtask. One of the main reasons why our system is outperformed by the top
systems is that not all the named entities identified by the system were classified into any of
the ten categories.
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Features Recall Precision Fy
Lexical 22.39 34.58 27.18
Word internal | 15.13 49.50 23.17
Context 6.20 95.35 11.65

Table 4.2: Feature contributions to Model-1 for Named Entity Classification (‘10types’ devel-
opment data)

4.3 Unsupervised Named Entity Extraction and Linking

A specific shared task on Twitter named entity recognition and linking (NEEL) to DBpedia
was held at the #Microposts2016 workshop (Rizzo et al., 2016), with the problem defined
as to identify named entities from the tweets (called ‘Strong typed mention match’) and
to link them to the DBpedia database (‘Strong link match’). DBpedia extracts structured
information from Wikipedia and links different Web data sets to Wikipedia data, allowing
for sophisticated queries against Wikipedia. The DBpedia knowledgebase is available in 125
languages, with the English version describing 4.58 million items, out of which 4.22 million are
classified in a consistent ontology.

Five teams participated in the #Microposts2016 NEEL challenge. However, most of the sys-
tems suffered from very low recall values in the Twitter NE identification task and were actually
unable to efficiently recognise Twitter names: To increase recall and F-score, we take a two-step
approach to identifying and classifying named entities in noisy user-generated texts. In the first
step, Twitter names are identified using CRF within the framework of Differential Evolution
(Storn and Price, 1997). In step two, the named entities are classified into seven categories
and linked to DBpedia using a vector space model and edit distance techniques. The identified
named entities are also classified using CRF, and the outputs of the classification models are
later combined.

To fairly evaluate the approach, it was applied to the unseen test data using the selected
features along with the context features, giving the recall, precision and Fi-scores of 73.9%,
89.2% and 80.8%, respectively on the named entity identification. The F-measure performance
constitutes an increase by 20 points over a baseline using only a CRF-based classifier. When
merging the development data with the training data and building a model using selected
features, the recall, precision and F-measure values are 81.3%, 90.8% and 85.7%, respectively,
also improving on the scores obtained by the baseline model. The results show that the multi-
objective DE-based approach efficiently identifies Twitter names from noisy text.

For the named entity classification, the best model achieved precision, recall and Fi-scores of
65.3%, 67.1% and 66.2%, respectively, on unseen test data, which is by far the the best results
compared to all the other models as well as to all the #Microposts2016 systems, with the best
existing system, KEA (Waitelonis and Sack, 2016), reaching a 47.2% F-score on the task. Still,
when merging the development data with the training data and training on the combined data
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set, the performance of the DE-based system is even further improved, with precision, recall
and F-score of 69.7%, 71.7% and 70.7%.

To link the classified Twitter names to DBpedia, a knowledge-based approach was used (uti-
lizing either training data or the DBpedia database). The DE-based models then outperform
the NEEL 2016 systems in terms of precision, but fail get a higher F-score than the KEA sys-
tem due to lower recall. However, when development data are merged with the training data
for the model building, the DE-based approach again gives the best test data results among
all the systems, achieving recall, precision and F-measure values of 57.2%, 78.1% and 66.0%,
compared to an F-score of 50.1% for KEA.
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Chapter 5

Named Entity Recognition for
Ambharic Using Deep Learning

This chapter will focus on named entity recognition (NER) for Amharic, the second largest
Semitic language in the World (after Arabic) and the main language for country-wide commu-
nication in Ethiopia. Ambharic is written in its own unique script which lacks capitalization
and in total has 275 characters (mainly consonant-vowel pairs).

The task of named entity recognition is to identify proper names and classify them into some
predefined categories. Most current NER research utilises machine learning approaches (Laf-
ferty et al., 2001b; Takeuchi and Collier, 2002; Zhou and Su, 2002), heavily based on the avail-
ability of resources on the web, a route which obviously cannot always be taken for resource-poor
languages.

Recently, deep neural networks have been shown to effectively solve several language processing
tasks such as part-of-speech tagging, sentiment analysis, and NER. A feed-forward neural
network to identify named entities was designed by Collobert et al. (2011) using a fixed number
of context words, while Chiu and Nichols (2016) further improved performance using character
and word embeddings. Huang et al. (2015) proposed a more complex method based on a
bi-directional long short term memory (LSTM) model.

Most named entity recognition efforts have focused on a few European and Asian languages,
while African languages have been given little attention; however, three Master’s Thesis projects
at Addis Ababa University have experimented with subsets of the WALTA corpus (Demeke and
Getachew, 2006; Gambéck, 2012) using the version of the corpus transcribed into the Roman
alphabet and annotated it with 4-class named entity (NE) tags for persons, organisations,
locations and others (non-NE; roughly 90% of the datasets):

Mehamed (2010) and Alemu (2013) both used Conditional Random Fields (CRFs) classifiers
trained on different word and context features (word prefixes and suffixes, and the NE and part-
of-speech tags of the word), with Mehamed (2010) achieving recall, precision and F;-measure
values of 75.0% , 74.2%, and 74.6%, respectively, for this task on a 10,500 word subset.
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Alemu (2013) experimented with context windows of up to two words before and after the
current token on another 13,500 word subset of the WALTA corpus, improving recall to 84.9%
and precision to 76.8% for an 80.7% F-score. It is not clear from that work how the dataset
was selected, or whether it overlapped with the dataset used by Mehamed (2010).

Belay (2014) used a combination of decision trees, support vector machines and hand-crafted
rules on the same dataset as Alemu (2013), but artificially expanded it to get a better balance
between the classes. However, Belay (2014) noted that his hybrid learning approach was
outperformed by a straight-forward baseline method using only part-of-speech information and
a binary flag for nominals.

In contrast, we have experimented with a substantially larger dataset and two deep learning
approaches to identify and classify Amharic named entities into six predefined classes: Person,
Location, Organization, Time, Title, and Other (non-named entity tokens). Both set-ups
utilize a recurrent neural network, a bi-directional long short term memory (LSTM) model
with various features. Word vectors based on semantic information are built for all tokens
using an unsupervised learning algorithm, word2vec. In a basic system set-up, the word vectors
were merged with a set of specifically developed language independent features and together
fed to the neural network model to predict the classes of the words. When evaluated by 10-
fold cross-validation, this basic deep-learning based Amharic named entity recogniser achieved
reasonable average precision (77.2%), but did worse on recall (63.4%), for a 69.7% F1-score.

In order to improve performance, a stacked system approach was taken, where a supervised
Conditional Random Fields (CRF) classifier trained on language independent features first
predicts each token’s named entity class. The CRF output predictions, the selected feature
set and the word2vec word vectors are then fed to the deep neural network (LSTM model)
which assigns labels to the words. 10-fold cross-validation showed the Amharic named entity
recogniser producing much improved and very good precision (86.0%), but still doing worse on
recall (65.5%), with a 74.3% F-score.

5.1 Amharic Named Entity Annotation

The Polyglot project (Al-Rfou et al., 2013) has created word embeddings for the more than
100 languages that have at least 10,000 Wikipedia entries, which mainly include European
and Asian languages (and some artificial languages), but in addition to Arabic also a few
Sub-Saharan African languages such as Yoruba, Swahili, Africaans and Amharic.! However,
although their 4-class annotations (persons, organisations, locations and others) for named
entity recognition (Al-Rfou et al., 2015) include 40 languages, Arabic is the only language
spoken in Africa which has been annotated so far.?

In contrast, the Amharic dataset annotated within the SAY project at New Mexico State
University’s Computing Research Laboratory uses a richer 6-class annotation scheme, with the
categories person, location, organization, time, title and other (for non-named entity tokens).

Thttp://bit.ly /embeddings
https://bit.ly /polyglot-ner
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Fold | sent. tokens NEs

1 |3,784 99,095 5,056
2 | 3,802 98293 4,804
3 | 3859 99,379 4,828
4 | 3,743 96,282 4,878
5 | 3,895 100,197 5,018
6 | 3,862 100,963 5,027
7 | 3,902 100877 5,012
8 | 3,730 96,620 4,788
9 | 3832 98300 4,951
10 | 3,725 97,078 4,868

Table 5.1: Training data statistics

Named entities
Fold | sent. tokens | total match noMatch
1 453 10,581 | 424 236 188
2 435 11,383 | 586 249 337
3 378 10,297 | 652 313 339
4 494 13,394 | 602 291 311
5 342 9,479 | 462 200 262
6 375 8,713 | 453 209 244
7 335 8,799 | 468 218 250
8 507 13,056 | 692 275 417
9 405 11,376 | 529 215 314
10 512 12,598 | 612 307 305

Total | 4,236 109,676 | 5,480

Table 5.2: Test data statistics

The SAY annotations are available in 322 XML files from the Lexical Data Repository of the
Ge’ez Frontier Foundation.3

To run the experiments reported on below, the named entity annotated SAY dataset was here
split into ten parts for cross validation. Table 5.1 shows the statistics of the training data in
terms of number of sentences, tokens, and named entities. Table 5.2 gives the same information
for the test data, including the total number of named entities, as well as the number of test
NEs that matched with training NEs (‘match’) and those that did not (‘noMatch’).

5.2 A Basic Named Entity Recognition System for Ambharic

The task of Amharic named entity recognition system is to identity proper names and classify
them into some predefined categories/labels. A deep learning approach was used to recognize

Shttps://github.com/geezorg/data/tree/master/amharic/tagged/nmsu-say
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Trammng/Test Word2vec Feature Vectors
Data
Word
Embedding
Softmaz for NE Bi-LSTM
output prediction

Figure 5.1: Pipeline of the basic LSTM model

the named entities from Amharic text. The pipeline of NE prediction model is shown in
Figure 5.1.

5.2.1 Feature Vectors

First a set of language independent features was defined, as follows:

Local context plays an important role in identifying names. Here two words before and after
the focus word were used as local context (so there are four context features).

Part-of-speech tags extracted for each token using HornMorpho (Gasser, 2011), which is
one of the few resources that already are available for Ethiopian languages and provides
some morphological processing for Amharic, Tigrinya and Afaan Oromo.

Word suffix and prefix obtained by stripping a fixed number (up to 4) of characters from
the beginning and end of the current word.

Word frequency: Less frequent words were found to often belong to named entities. If the
pre-calculated frequency from the training/test data of the current word is less than a
certain threshold, this binary feature is set. The thresholds were empirically set to 10
and 4 for training and test data, respectively.

Digit check: to identify the ‘time’ class, it is helpful to mark if a token contains any digit(s).
Hence this binary flag is set for tokens containing at least one digit.

5.2.2 Word embeddings

The deep learning method is divided into two parts: word embedding and bi-directional LSTM.
The word embeddings are generated in two ways, through word2vec and random vectors. In
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random vectors, all the words in the corpora are initialized with random values. These random
vectors are fed to the bi-directional LSTM model to classify the words into the six categories.

The idea of word2vec method is that words occurring in similar contexts have related meanings.
It takes inputs from large corpora and generates a word vector for each word. There are two
types of embeddings: continuous-bags-of-words (CBOW) and skip-gram models (Mikolov et al.,
2013,7). In the CBOW architecture, the model predicts the current word from a window of
surrounding context words. In the skip-gram model, it predicts the context words using the
current word. The word2vec model can be trained using a softmax function (Rong, 2014) or
negative sampling (Rong, 2014). For Ambharic, the entire corpus was used as a training data
for a word2vec model using skip-grams and negative sampling. Then a bi-directional LSTM
model was utilised to classify the words based on word vectors generated either by word2vec
or randomly.

5.2.3 Bi-directional Long Short Term Memory Model

In the bi-directional LSTM model, the network is learned by using training data and tested on
unseen data. The network uses an embedding/input layer with two hidden layers. In the output
layer, the softmax (Rong, 2014) function classifies the words into six categories/labels. Three
different LSTM models were generated using word embedding layers with various features, as
follows:

Model-1 uses randomly initialize word vectors to train the LSTM network which classifies
the words based on the softmax function.

Model-2 uses word2vec to generate a word vector for each unique word and train the LSTM
network classifier on these word vectors.

Model-3 takes as input word embeddings developed using word2vec along with the language
independent features (suffix and prefix, POS, frequency and digit-check). For the suffix
and prefix features, 5-dimensional word vectors are generated for each length of suf-
fix /prefix character(s) using word2vec. The suffix and prefix lengths are set for up to
four characters, so that 40 (5x8) word vectors are generated for the suffix and prefix fea-
tures. In addition, one-hot vectors are generated for each of the other feature: a length 5
one-hot vector for POS, a length 2 one-hot vector for frequency, and a length 2 one-hot
vector for the digit-check feature.

The LSTM network is learned using these word embeddings and classified the words into the
six categories, following the NE prediction model pipeline shown above (Figure 5.1).

5.2.4 Results

As outlined in the previous section, three models were built based on a bi-directional LSTM to
predict the named entity class of a particular token. Each model was tested using 10-fold cross-
validation on the data described in Section 5.1. In the first model (Model-1), the bi-directional
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Fold | Precision Recall F-measure

1 0.8271 0.3517 0.4935
2 0.8023 0.3436 0.4812
3 0.8788 0.2895 0.4356
4 0.8511 0.2846 0.4266
5 0.7621 0.3173 0.4481
6 0.8540 0.2588 0.3973
7 0.8621 0.3125 0.4587
8 0.8773 0.3187 0.4676
9 0.8101 0.2812 0.4175
10 0.8514 0.3014 0.4452
Avg. 0.8376 0.3059 0.4471

Table 5.3: LSTM random vectors (Model-1)

Fold ‘ Precision Recall F-measure

1 0.8067 0.6446 0.7166
2 0.6845 0.5936 0.6358
3 0.7566 0.6090 0.6748
4 0.7864 0.5925 0.6758
5 0.7955 0.5719 0.6654
6 0.7682 0.5719 0.6557
7 0.7709 0.6094 0.6806
8 0.7057 0.5943 0.6452
9 0.7037 0.6116 0.6544
10 0.7578 0.6436 0.6961
Avg. 0.7536 0.6042 0.6700

Table 5.4: LSTM word2vec vectors (Model-2)

LSTM model based on random vectors is used, taking 300 as the size of the random vectors.
Model-1 produces the average precision, recall and F1 values of 83.76%, 30.59% and 44.71%,
respectively. The complete 10-fold cross-validated results are reported in Table 5.3.

In the second round of experiments, a bi-directional LSTM model was build based on word2vec
(Model-2). Here the skip-gram model was used to generate word vectors of dimension 300. As
the 10-fold cross-validated results in Table 5.4 show, Model-2 achieves better performance
compared to Model-1 by producing the average respective precision, recall and F-measure
values of 75.78%, 60.42% and 67.00%. The precision thus actually is slightly lower than for
Model-1, but the radically improved recall still makes this model perform quite a lot better
overall.

In Model-3, the set of language independent features mentioned in Section 5.2.1 above (except
the context feature) were used to generate feature vectors that were added to the word vectors
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Fold | Precision Recall F-measure

1 0.7930 0.6667 0.7244
2 0.7016 0.6490 0.6743
3 0.8093 0.6290 0.7079
4 0.7766 0.6516 0.7087
) 0.7792 0.5974 0.6763
6 0.7614 0.6073 0.6757
7 0.7859 0.6156 0.6904
8 0.7578 0.6360 0.6916
9 0.7464 0.6467 0.6930
10 0.8055 0.6633 0.7275
Avg. 0.7717 0.6363 0.6970

Table 5.5: LSTM word2vec and features (Model-3)

built from skip-gram word2vec model. The average recall, precision and F-measure values after
10-fold cross-validation are further improved (i.e., compared both to Model-1 and Model-2):.
As shown in Table 5.5, Model-3 achieves an increase both in average precision (77.2%) and
recall (63.4%) compared to Model-2, for a 69.7% F1-score.

5.3 A Stacked Named Entity Recognition System for Ambharic

In order to improve on the results of the previous section, a stack-based deep learning approach
was used to recognize the named entities from Ambharic text. Here the output of a supervised
Conditional Random Field model are merged with the word vectors and fed to the LSTM
model to classify the words. The pipeline of the stack-based model is shown in Figure 5.2, with
the different parts further described below, starting with the supervised CRF model.

Training/Test Worvec Feature CRF Outputs
Data Vectors vector
Word
Embedding
Softmax for NE ;
e Bi-LSTM
outputs prediction

Figure 5.2: Pipeline of stack-based model
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Fold | Precision Recall F-measure

1 0.8726 0.6887 0.7698
2 0.8070 0.6197 0.7010
3 0.8499 0.6044 0.7064
4 0.8608 0.6399 0.7341
5 0.8492 0.5580 0.6738
6 0.8335 0.6039 0.7004
7 0.8611 0.6072 0.7122
8 0.8733 0.5796 0.6968
9 0.8144 0.6133 0.6997
10 0.8804 0.6530 0.7498
Avg. 0.8502 0.6167 0.71.44

Table 5.6: CRF classifier (Model-4)

5.3.1 CRF-based model (Model-4)

In the first step, Amharic named entities are extracted using a supervised machine learning ap-
proach, namely Conditional Random Fields (CRFs). We used the C** based CRF** package,?
a simple, customizable, and open source implementation of CRF for segmenting or labelling se-
quential data. The CRF classifier was trained on the language independent features described
in Section 5.2.1.

5.3.2 Stack-based LSTM (Model-5)

The bi-directional LSTM models and word embeddings were created in the same fashion as
in the previous section, but with a fifth, stack-based LSTM model being generated, where the
output of the supervised model (Model-4) is used to learn a bi-directional LSTM network.
Length 6 one-hot word vectors were generated (each bit represents one class) for the Model-4
outputs and concatenated with the word vectors generated by Model-2 using word2vec and the
feature vectors. These three information sources are then fed into the LSTM network which
classifies the tokens.

5.3.3 Results

First the supervised model (Model-4) was built using a CRF classifier based on the features
mentioned in Section 5.2.1. The average 10-fold cross-validation precision, recall and F-measure
values of are 85.02%, 61.67% and 71.44%, respectively. For each fold, the recall, precision and
F-measure values are given in Table 5.6.

‘http://cripp.sourceforge.net
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Fold | Precision Recall F-measure

1 0.8746 0.7267 0.7938
2 0.8048 0.6669 0.7293
3 0.8760 0.6405 0.7400
4 0.8643 0.6734 0.7567
) 0.8756 0.5847 0.7011
6 0.8431 0.6361 0.7251
7 0.8807 0.6615 0.7555
8 0.8917 0.6199 0.7313
9 0.8208 0.6722 0.7391
10 0.8658 0.6687 0.7546
Avg. 0.8597 0.6551 0.7426

Table 5.7: Stack-based LSTM (Model-5)

The stacked based model (Model-5) out-performs all previous models, with the 10-fold cross-
validation results shown in Table 5.7. So reaching average precision, recall and F-measure
values of 85.97%, 65.51% and 74.26%, respectively, using the outputs of the CRF learning
classifier (Model-4) along with the features vectors and the word vectors from the word2vec
model.

5.4 Discussion

Here we have experimented with a system for named entity recognition for Amharic, an under-
resourced language. A set of language independent features was developed to extract Amharic
named entities using a supervised classifier and an unsupervised bi-directional LSTM model.
Better performance was achieved after creating word embeddings based on the output of the
supervised model and the feature vectors together with word2vec word vectors, and then feeding
the result to the neural network for training and classification.

Linguistic development is one of the most central aspects of the development of a nation. The
Ethiopian Growth and Transformation Plan (2010-2015) also mentions language specifically:
“Enhancing and promoting Ethiopian nations, nationalities, and peoples languages and folk-
lores.” (p.75). The present work aligns with this plan, since it aims to develop means for
the processing and understanding of texts written in Ethiopian languages, here focussing on
Ambharic which is the nation-wide communication language. Tools and resources that can help
reduce language barriers and thereby provide people all over the world with improved access to
information and services will have beneficial effects for most sectors of society and in the long-
term contribute to the development of technology that will enable massive social and economic
transformations.
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The present system takes a small but important step in the direction of developing such tools.
However, the error levels are still high, and many names were not identified by the system or
classified into the wrong NE categories.

Many names are not identified by the system or classified into the wrong NE categories. Notably
though, one error source is that many names in the training data are annotated as non-entities,
but in test data the names are annotated as named entities. However, the main cause of the
low recall is most likely insufficient number of training instances, which are further reduced
both by Ambharic being an agglutinative language and by it lacking spelling standard for many
names. Poostchi et al. (2016) carried out a similar NE task on an almost equal-sized Persian
corpus (250 k tokens, of which about 10% were named entities), comparing an SVM-HMM
based approach to CRF and a recurrent neural network. The SVM-based classifier performed
best, since their dataset also was too small for the neural network to be trained efficiently.

In the future it would be reasonable to also develop some language dependent features to
improve the performance. A set of models can also be generated by using several different
classifiers and ensemble these models with the help on an evolutionary algorithm. It might
also be possible to utilize the word embeddings generated for Amharic in the Polyglot project.
Furthermore, the word2vec model used here was built on skip-grams that predict the context
words using the current word. An alternative would be to use the continuous-bags-of-words
(CBOW) model, which basically does the opposite and predicts the current word from a window
of surrounding context words.
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