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1 Introduction

The main background for the present deliverable is given in the deliverable “D1.1.4 & D5.2:
Semantic content matching — Module specification & Semantic search interface”, in particular
Chapter 5 (“Named Entity Recognition for Amharic Using Deep Learning”), which describes
the two versions of the Amharic Named Entity Recognizer together with some preliminary
evalution of them. The other chapters of that deliverable give the reasoning for the setup and
report on some related experiments. The present text will thus only describe the deep learning
approach to named entity recognition (NER) for Amharic in some more detail and present the
final evaluation of the system.

As reported in D1.1.4 & D5.2, experiments were carried out on named entity recognition both
on English social media texts (tweets) and on an annotated Amharic named entity corpus, and
with several different methods: rather than restricting to word space models, we used both
a supervised method, namely Conditional Random Fields (CRFs), an evolutionary feature
optimization approach (Differential Evolution), and a deep learning approach in the form of a
recurrent neural network (bi-directional long short term memory, bi-LSTM).

2 Amharic Named Entity Corpus

The present NER system utilizes Amharic datasets annotated within the SAY project at New
Mexico State University’s Computing Research Laboratory that use a richer 6-class annotation
scheme, with the categories person, location, organization, time, title and other (not named
entity). The SAY Amharic annotations are available in 322 XML files from the Lexical Data
Repository of the Ge’ez Frontier Foundation.1 These files were here split into ten parts for
ten-fold cross-validation. Table 1 shows the statistics of the training data for each fold (i.e.,
the sum of the other nine folds) in terms of number of sentences, tokens, and named entities,
as well as the same information for the test data (i.e., each fold in itself), but in addition to
the total number of named entities for each fold also the number of NEs in the test set (fold)
that also could be found in the training set (‘match’) and those that could not (‘noMatch’).
Hence the ‘noMatch’ column shows the number of NEs unique to that specific fold.

3 Bi-directional Long Short Term Memory Model

In the first version of the Amharic NER system, a bi-directional LSTM (Long Short Term
Memory) model was used. The deep learning method is divided into two parts: word embedding
and bi-directional LSTM. The word embeddings were generated through word2vec, which takes
inputs from large corpora and generates a word vector for each word. There are two types of
embeddings: continuous-bags-of-words (CBOW) and skip-gram models (Mikolov et al., 2013,?).
In the CBOW architecture, the model predicts the current word from a window of surrounding
context words. In the skip-gram model, it predicts the context words using the current word.
The word2vec model can be trained using a softmax function (Rong, 2014) or negative sampling

1https://github.com/geezorg/data/tree/master/amharic/tagged/nmsu-say
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Training data Test data
Named Named entities

Fold Sentences Tokens entities Sentences Tokens total match noMatch

1 3,784 99,095 5,056 453 10,581 424 236 188
2 3,801 98,293 4,894 436 11,383 586 249 337
3 3,859 99,379 4,828 378 10,297 652 313 339
4 3,743 96,282 4,878 494 13,394 602 291 311
5 3,895 100,197 5,018 342 9,479 462 200 262
6 3,862 100,963 5,027 375 8,713 453 209 244
7 3,902 100,877 5,012 335 8,799 468 218 250
8 3,730 96,620 4,788 507 13,056 692 275 417
9 3,832 98,300 4,951 405 11,376 529 215 314
10 3,725 97,078 4,868 512 12,598 612 307 305

Total 4,237 109,676 5,480

Table 1: Training and test data statistics

(Rong, 2014). Since word2vec is a unsupervised approach where annotations are not needed,
the entire Amharic corpus (without annotations) was taken as training data for a word2vec
model using skip-grams and negative sampling.

The bi-directional LSTM model classifies the words following the NE prediction pipeline shown
in Figure 1. The network consists of an embedding/input layer with two hidden layers. In the
output layer, the softmax (Rong, 2014) function assigns the words to six categories/labels. In
the input layer, the word embeddings developed using word2vec are combined with non-context
features: suffix and prefix, POS, frequency and digit-check (described further in Section 5).
For the suffix and prefix features, 5-dimensional word vectors are generated for each length of
suffix/prefix character(s) using word2vec. The suffix and prefix lengths are set for up to four
characters, so that 40 (5x8) word vectors are generated for the suffix and prefix features. In
addition, one-hot vectors are generated for each of the other features: a length 2 one-hot vector
for frequency, a length 2 one-hot vector for the digit-check feature, and a length 5 one-hot vector
for POS (encoding the classes nouns, verbs, infinitives, copulas, and ‘others’).
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Figure 1: Baseline LSTM model
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Figure 2: Pipeline of stack-based model

4 Stack-based LSTM Model

In order to optimise the system performance, a stack-based deep learner was built, combining
the output of a supervised Conditional Random Field model with word embedding vectors
and a set of language-independent features fed to the LSTM model to classify the words. The
pipeline of the stack-based model is shown in Figure 2, with the different parts on the left of
the figure working together to encode the input to the neural network:

1. A word embedding of size 300 was created from word2vec using a skip-gram model.

2. Different feature vectors of size 49 were extracted for each word in the training and test
datasets, using the features described in Section 3. These feature vectors are concatenated
with the word2vec output.

3. In addition, the same features were used by the CRF classifier to predict the tag for each
word, with length 6 (each bit represents one class) one-hot word vectors being generated
for the CRF outputs, and concatenated with the word vectors generated by the word2vec
model and the feature vectors.

These three information sources (vector size 355) were then fed to a bi-directional LSTM neural
network with two hidden layers in order to classify the tokens into one of the six different classes.
The LSTM model was trained for 100 epochs with a batch size of 256 and with the maximum
sentence length set to 70.

For comparison, another system was trained using the same setup, but without feeding feature
vectors to the LSTM model. Hence that network only uses word embeddings generated by
word2vec (size 300) concatenated with the CRF output vector (6 one-hot word vector), so a
total input word dimension of 306.
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5 Results

To establish a baseline, a supervised model was built using a CRF classifier, a supervised
machine learner, built with the C++ based CRF++ package,2 a simple, customizable, and open
source implementation of CRF for segmenting or labelling sequential data. The CRF classifier
was trained on the following set of features:

Local context plays an important role in identifying names. As in the work by Alemu (2013),
two words before and after the focus word were used as local context (so there are four
context features).

Part-of-speech tags extracted for each token using HornMorpho (Gasser, 2011), which is
one of the few resources that already are available for Ethiopian languages and provides
some morphological processing for Amharic, Tigrinya and Afaan Oromo.

Word suffix and prefix obtained by stripping a fixed number (up to 4) of characters from
the beginning and end of the current word.

Word frequency: Less frequent words were found to often belong to named entities. If the
pre-calculated frequency from the training/test data of the current word is less than a
certain threshold, this binary feature is set. The thresholds were empirically set to 10
and 4 for training and test data, respectively (the frequency count threshold for the test
data has to be lower than that for the training data, since there are a lot fewer instances
in the test data than in the training data).

Digit check: in particular to identify the ‘time’ class, it is helpful to mark if a token contains
any digit(s). Hence this binary flag is set for tokens containing at least one digit.

After 10-fold cross-validation, the CRF classifier achieved the average precision, recall and
F1-scores of 85.02%, 61.67% and 71.44%, respectively. For each fold, the recall, precision and
F-measure values are given on the left side of Table 2.

The first version of the deep learning-based NER system was the LSTM described in Section 3,
utilizing feature vectors based on the language independent features (except the context feature)
that were added to the word vectors built from skip-gram word2vec model. The average recall,
precision and F-scores after 10-fold cross-validation are shown on the right side of Table 2: the
model using both word vectors and features achieves an average precision of 77.2% and recall
of 63.4%, for a 69.7% F1-score. It thus slightly improves the recall compared to the CRF-based
classifier, but at the price of a clearly lower precision.

The performance of the stacked-based LSTM model incorporating two information sources
(word vectors and CRF outputs), but not the feature vectors reached the average precision,
recall and F-measure values of 85.91%, 65.33% and 74.10%, respectively, as shown on the left
side of Table 3 (‘No-feat LSTM’), hence surpassing both the baseline and the pure LSTM
system on all accounts.

2http://crfpp.sourceforge.net
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CRF classifier word2vec + features
Fold Precision Recall F1-score Precision Recall F1-score

1 0.8726 0.6887 0.7698 0.7930 0.6667 0.7244
2 0.8070 0.6197 0.7010 0.7016 0.6490 0.6743
3 0.8499 0.6044 0.7064 0.8093 0.6290 0.7079
4 0.8608 0.6399 0.7341 0.7766 0.6516 0.7087
5 0.8492 0.5580 0.6738 0.7792 0.5974 0.6763
6 0.8335 0.6039 0.7004 0.7614 0.6073 0.6757
7 0.8611 0.6072 0.7122 0.7859 0.6156 0.6904
8 0.8733 0.5796 0.6968 0.7578 0.6360 0.6916
9 0.8144 0.6133 0.6997 0.7464 0.6467 0.6930
10 0.8804 0.6530 0.7498 0.8055 0.6633 0.7275

Avg. 0.8502 0.6167 0.7144 0.7717 0.6363 0.6970

Table 2: Baseline systems: CRF classifier and LSTM with word2vec plus features

The stacked-based model incorporating all three information sources (word vectors, features
and CRF outputs) out-performed all previous models, with the 10-fold cross-validation results
shown in the middle of Table 3, so reaching average precision, recall and F-measure values
of 85.97%, 65.51% and 74.26%, respectively, using the outputs of the previous CRF learning
classifier along with the feature vectors and the word vectors from the word2vec model. How-
ever, the improvements compared to the ‘No-feat’ LSTM model are small, indicating that the
mileage stemming from the language-independent feature set is not very significant.

No-feat LSTM Stack-based LSTM Voting-based Ensemble
Fold Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

1 0.8716 0.7242 0.7911 0.8746 0.7267 0.7938 0.7511 0.8026 0.7760
2 0.8035 0.6661 0.7284 0.8048 0.6669 0.7293 0.7517 0.7052 0.7277
3 0.8760 0.6405 0.7400 0.8760 0.6405 0.7400 0.7787 0.7273 0.7521
4 0.8632 0.6726 0.7561 0.8643 0.6734 0.7567 0.7703 0.7356 0.7525
5 0.8750 0.5814 0.6986 0.8756 0.5847 0.7011 0.7557 0.6687 0.7096
6 0.8401 0.6338 0.7225 0.8431 0.6361 0.7251 0.7657 0.7123 0.7381
7 0.8807 0.6615 0.7555 0.8807 0.6615 0.7555 0.7295 0.7416 0.7355
8 0.8940 0.6169 0.7301 0.8917 0.6199 0.7313 0.7296 0.7024 0.7158
9 0.8195 0.6704 0.7375 0.8208 0.6722 0.7391 0.7325 0.7390 0.7357
10 0.8617 0.6656 0.7511 0.8658 0.6687 0.7546 0.7592 0.7551 0.7571

Avg. 0.8591 0.6533 0.7410 0.8597 0.6551 0.7426 0.7524 0.7289 0.7400

Table 3: A stack-based LSTM without feature vector input (but using word2vec and CRF
outputs), a stack-based LSTM using all three information sources, and a voting-based ensemble
of a CRF classifier and an LSTM model using word2vec and features.
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Figure 3: F-measure vs. size of training data (each step adds on average 424 sentences)

As an alternative to combining the CRF classifier and the LSTM in a stack-based model, a set
of experiments were run where they were instead emsembled in a voting-based scheme. As can
be seen in the right-most part of Table 3, a combination of CRF with an LSTM trained on the
word2vec word embeddings and the language independent feature set performed better than
the stack-based LSTM model in terms of recall, but worse than all the other models in terms
of precision, for an average F-score which was slightly lower than both versions of the stacked
LSTM (i.e., both with and without the features in the input set).

In order to investigate the cause of the low recall values of the stacked LSTM model, another
set of experiments was run, exploring the effect of increasing the size of the training dataset.
Here Figure 3 represents the variation of F-measure values with respect to different sizes of
training datasets. The three graphs in the figure compare the performance of the stack-based
LSTM model to that of the plain CRF classifier and the LSTM model trained on word2vec
word embeddings and the feature vectors, in each case showing how the performance increases
as more data (another fold) is added to the training dataset. As can be seen, all three systems
improve rapidly as the first three folds are added, but (as could be expected) performance
keeps on improving as more data is added, indicating that all systems would benefit from
having access to even more training data.
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6 Conclusion

Here we have experimented with a system for named entity recognition for Amharic, an under-
resourced language. A set of language independent features was developed to extract Amharic
named entities using a supervised CRF classifier and bi-directional LSTM model. Better per-
formance was achieved after creating (unsupervised) word embeddings based on the output of
the supervised model and the feature vectors together with word2vec word vectors, and then
feeding the result to the neural network for training and classification. When the outputs of
the CRF model were concatenated with the word embeddings, the recurrent network outper-
formed the other models. This may be since many of the tags/classes are identified already
by the CRF model. However, the stack-based LSTM model utilizing the CRF output as an
information source clearly improved on the CRF classifier itself, in particular in terms of recall.
A voting-based ensemble solution using the CRF classifier and an LSTM built only on word
embeddings and feature vectors showed further improvements to recall, but at the price of
substantially lower precision.

Tools and resources that can help reduce language barriers and thereby provide people all
over the world with improved access to information and services will have beneficial effects for
most sectors of society and in the long-term contribute to the development of technology that
will enable massive social and economic transformations. The present system takes a small
but important step in the direction of developing such tools, but the error levels are still high
and many names were not identified by the system or classified into the wrong NE categories.
Notably though, one error source is that many names in the training data are annotated as
non-entities, but in test data the names are annotated as named entities. However, the main
cause of the low recall is most likely insufficient number of training instances, which are further
reduced both by Amharic being an agglutinative language and by it lacking spelling standard
for many names. This is in line with the results reported by Poostchi et al. (2016) who carried
out a similar NE task on Persian, another under-resourced language, using an almost equal-
sized corpus (250K tokens, of which about 10% were named entities). They compared an
SVM-HMM based approach to CRF and a recurrent neural network, with the SVM-based
classifier performing best, potentially since their dataset also was too small for the neural
network to be trained efficiently.

In the future it would be reasonable to also develop some language dependent features to
improve the performance. A set of models can also be generated by using several different clas-
sifiers and ensemble these models with the help of an evolutionary algorithm. It might also be
possible to utilize the word embeddings generated for Amharic in the Polyglot project (Al-Rfou
et al., 2013). They have created word embeddings for the more than 100 languages that have
at least 10,000 Wikipedia entries, which mainly include European and Asian languages (and
some artificial languages), but in addition to Arabic also a few Sub-Saharan African languages
such as Yoruba, Swahili, Africaans and Amharic.3 Alternatively, the cleaned Amharic web
corpus created in the HaBiT project could be used as the basis for creating word embeddings.

Furthermore, the word2vec model used here was built on skip-grams that predict the context
words using the current word. An alternative would be to use the continuous-bags-of-words

3http://bit.ly/embeddings
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(CBOW) model, which basically does the opposite and predicts the current word from a window
of surrounding context words.

An alternative to using the LSTM recurrent neural network (RNN) would be to use a Convo-
lutional Neural Network (CNN). In general, RNNs tend to perform better for tasks where the
sequential nature of human language can be exploited, but which of the two strategies work
best for a specific task is often an empirical question. See Gambäck and Sikdar (2017) for a
small study on using a CNN for a language classification task for Twitter data (identifying hate
speech).
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